Roll N	O. :	
--------	------	--

Total No. of Questions: 11] [Total No. of Printed Pages: 4

BPP-1097

M.Sc. (Previous) Examination, 2022 PHYSICS

Paper - II

(Statistical Mechanics, Electrodynamics and Plasma Physics)

Time: 3 Hours [Maximum Marks: 75

Section-A (Marks: $2 \times 10 = 20$)

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section–B (Marks : $5 \times 5 = 25$)

Note: Answer all five questions. Each question has internal choice (Answer limit200 words). Each question carries 5 marks.

Section–C (Marks : $10 \times 3 = 30$)

Note: Answer any *three* questions out of five (Answer limit **500** words). Each question carries **10** marks.

Section-A

- 1. (i) Define statistical distribution function for a system of particles.
 - (ii) Define density matrix in statistical mechanics for a system of particles obeying quantum mechanics.

BR-424 (1) BPP-1097 P.T.O.

- (iii) Write the physical meaning of a canonical partition function.
- (iv) At high temperatures, an ideal gas obey Boltzmann statistics. Justify.
- (v) How Bose-Einstein condensation differs from ordinary vapour condensation?
- (vi) Define Fermi temperature for an Ideal Fermi Gas.
- (vii) Write the equation of state of a hard sphere gas in virial form.
- (viii) Explain the relation between Brownian motion and fluctuations in a fluid.
- (ix) For a given applied force, the radiation losses are largest for electrons in charged particle accelerator. Explain.
- (x) Define Pinched plasma.

Section-B

2. Calculate the expression for free energy, entropy and internal energy for a system in canonical ensemble with energies 0 and 6.

Or

For a system in Grand canonical ensemble, show that:

$$\frac{PV}{RT} = \ln Z$$

where Z is the grand partition function and P,V, T have standard meaning.

3. Distinguish among the postulates of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics.

Or

Derive an expression for critical temperature for an ideal base gas.

4. For Brownian motion, show that the ensemble average of radial vector *r* is given by :

$$< r^2(t) > = 6 Dt$$

where D is diffusion coefficient and t is time.

BR-424 (2) BPP-1097

Show that the homogeneous Maxwell equations $\overrightarrow{\nabla}.\overrightarrow{B} = 0$ and $\overrightarrow{\nabla} \times \overrightarrow{E} + \frac{1}{C} \frac{\overrightarrow{\partial B}}{\partial t} = 0$, can be written in terms of dual field strength-Tensor $\boldsymbol{\mathcal{J}}^{\alpha\beta}$ as :

$$\partial_{\alpha} \mathbf{\mathcal{F}}^{\alpha\beta} = 0$$

5. For a charged particle in a uniform static magnetic induction \overrightarrow{B} , show that the action integral for this transverse motion is given by :

$$J = \frac{e}{C} (B \pi a^2)$$

where e is electric charge, C is speed of light and paticles orbital radius is a.

Or

Consider a uniform cylindrical column of plasma with a surrounding magnetic field. Explain the instabilities when there are departures in shape from the cylindrical cylinder of constant radius.

6. For a system of charged particles and electromagnetic fields, show that the differential continuity equation or conservation law is given by :

$$\frac{\partial u}{\partial t} + \overset{\rightarrow}{\nabla} \cdot \vec{S} = -\vec{J} \cdot \vec{E}$$

where u is total energy density, \overrightarrow{S} is Poynting vector, \overrightarrow{J} is current and \overrightarrow{E} is electric field.

Or

Derive expressions for Coulomb and Lorentz gauge and explain their physical meaning.

Section-C

7. State and prove Liouville's theorem. Relate it to statistical equilibrium.

BR-424 (3) BPP-1097 P.T.O.

- 8. Discuss the behaviour of a degenerate Fermi gas at sufficiently low temperatures and derive expressions for Fermi energy and pressure.
- 9. Derive an expression for total power radiated for an accelerated charge having angular distribution. Explain your result.
- 10. Discuss Landau theory of phase transition. Explain critical indices.
- 11. Write short notes on the following relevant for magnetoplasma wave phenomenon:
 - (a) CMA diagram
 - (b) Faraday rotation